Термопрокладка и термопаста: что лучше применять в компьютере

Делаем термопрокладку самостоятельно

Часто бывает, что при разборе ноутбука появляется проблема с охлаждающей системой. Термопрокладка либо износилась, а может срок годности, ее окончился. При этом нет возможности ее купить в срочном порядке. Интересно, что на время ее можно изготовить самостоятельно.

Для этого необходим бинт, термопаста. Необходимо сложить бинт в 5-6 слоев. Затем хорошо пропитать пастой. Помните, нельзя термопасту намазывать на бинт. При этом он будет расползаться. Его обязательно хорошо пропитывают. Хорошо пропитанную ткань прикладываем к процессору. Если материал немного выходит за границы, то в этом страшного, нет. Главное, чтобы тканевая пластина полностью прилегала к радиатору.

Использование бинта

Этот вариант подходит лишь на время. Он не дает ПК, нагреется выше 80 градусов. При этом можно смотреть фильмы, ролики. А вот если это игровой ноутбук, то он все же автоматически будет выключаться при нагреве.

Пластины из металла

Также можно использовать алюминиевые или медные пластины. Берем лист металла не больше 1 мм. Его можно заказать и на «Алиэкспресс». Затем вырезаем необходимый квадрат

Важно, не нужно вымерять точные размеры. Чем больше пластина, тем больше она сможет отвести тепла

Помните, этот вариант использовать постоянно не рекомендуют.

Прокладки можно заменить термопастой

Это худший вариант. 0,1 мл слоя пасты не смог защитить ноутбук от перегрева. Совет, заменяйте даже заводскую термостасту на термропрокладки. Вторые себя отлично зарекомендовали.

Рейтинг лучших термопаст 2021 года

  • Лучшие низкопроизводительные термопасты
  • Лучшие среднепроизводительные термопасты
  • Лучшие высокопроизводительные термопасты
Категория Место Наименование
Лучшие низкопроизводительные термопасты 1 GD900
2 Deep Cool Z3
3 Halnziye (HY410)
4 КПТ-8
Лучшие среднепроизводительные термопасты 1 ArcticCooling MX-4
2 Noctua NT-H1
3 Gelid GC-Pro
4 Prolimatech PK-1
5 Thermalright TF6
6 Arctic Silver Ceramique
7 GD900-1
8 GD007
Лучшие высокопроизводительные термопасты 1 Thermal Grizzly Kryonaut
2 Thermalright TF8
3 Gelid GC-Extreme
4 Cooler Master MasterGel Maker Nano
5 Prolimatech PK-3

Своими руками

Уже давно в свободном доступе практически в каждом компьютерном магазине есть большое разнообразие товаров. Там может быть приобретен или термоклей, или термопрокладка, или термопаста. Что лучше — покупать или делать вручную? Дело в том, что самодельная термопрокладка может быть изготовлена из обычной термопасты и медицинского бинта.

Стоимость «жвачки» относительно невысока, учитывая долгий срок службы, однако иногда бывает так, что возможности приобрести ее нет. Чтобы изготовить ее самотоятельно, потребуется медицинский бинт (чем мельче сетка, тем лучше) и термопаста (желательно взять две, вязкую и жидкую). Второй вариант: пластинка меди или алюминия и полировочный материал для них. Для начала следует вырезать подходящий по размеру кусочек бинта с запасом 3-5 мм. Нарезанные кусочки смазать термопастой. Делать это следует аккуратно, чтобы не повредить волокна бинта. Такая «сетка» придает термопасте жесткость, и она не растечется даже при сильном нагреве, хотя от использования бинта немного страдает теплопередача. Перед тем как накладывать новые прокладки на детали, следует смазать их тонким слоем термопасты, чтобы облегчить установку. Все лишнее затем отрезать ножницами и утрамбовать тонкой отверткой. Вместо бинтов можно использовать медь или алюминий. Для этого необходимо, используя ножницы по металлу, нарезать пластины из металла, хорошо отполировать их и установить аналогичным образом, предварительно удалив остатки старых прокладок и смазав поверхность чипов тонким слоем термопасты. Тесты пользователей показывают, что медная пластина дает выигрыш в три градуса в сравнении с алюминиевой, и в пять градусов по сравнению с бинтами. Заводские термопрокладки проигрывают правильно установленной пластинке меди на десять градусов, однако следует помнить, что, как правило, эти изделия не самые лучшие.

Смотреть галерею

Что лучше: термопаста или термопластина, по мнению редакции Zuzako

После того как мы ознакомились с лучшими моделями термопластин, давайте рассмотрим, что лучше: прокладки или пасты, и в чём заключаются их сходства и отличия:

  1. Выбор типа термоинтерфейса зависит от зазора между чипом и радиатором охлаждения. Если расстояние составляет 0.1—0.3 мм, то рекомендуется использовать пасту, а если более 1 мм — прокладку.
  2. Как правило, теплопроводность пластин меньше, чем у термопасты. Поэтому использование термопрокладки с топовыми мощными процессорами не рекомендовано. Исключение составляют тончайшие металлические пластины, которые при высокой температуре плавятся и заполняют все неровности, обеспечивая отличное охлаждение.
  3. Лёгкость нанесения. Нельзя сказать, что нанесение пасты или пластины доступно лишь профессионалам и опытным пользователям. При следовании инструкциям и отсутствии спешки с этим справится даже подросток. Однако термопрокладки всё же более удобны в установке: замере, удалении лишнего и наклейке.
  4. Цена зависит от характеристик и производителя термопасты или пластин. И в той, и в другой категории есть бюджетные и топовые модели. Стоимость сильно не отличается.
  5. Доступность. Производители предлагают несколько десятков пастообразных термоинтерфейсов, а вот хорошие прокладки можно пересчитать на пальцах обеих рук.
  6. Срок эксплуатации. Термопаста высыхает довольно быстро и, соответственно, с такой же скоростью теряет свои свойства.

У каждого вида термоинтерфейса есть свои преимущества и недостатки, и поэтому сложно однозначно сказать, какой из них лучше. Поэтому профессионалы рекомендуют использовать пластины только на ноутбуках. Это связано с тем, что процессор и видеокарта в этих устройствах больше подвергаются нагреву и тряске, а значит, хорошая термопластина будет лучшим вариантом.

Кроме того, для стационарного ПК стоит выбирать термопасту. На большинстве моделей расстояние между чипом процессора и радиатором минимально. В такой зазор сложно установить даже самую тонкую медную или алюминиевую термопрокладку.

Многих пользователей интересует вопрос, можно ли термопасту заменить пластиной, и наоборот. Теоретически это возможно, но специалисты не рекомендуют делать это по двум основным причинам:

  1. После демонтажа пластины и нанесения взамен неё термопасты радиатор кулера будет неплотно прилегать к видеокарте или чипу процессора. Это связано с тем, что, в основном, модели прокладок намного толще допустимого слоя термопасты и в зазор станет попадать воздух, способствующий перегреву электронных компонентов ПК.
  2. Если снять слой термопасты и установить пластину, то давление на крепление системы охлаждения возрастет. В результате могут наблюдаться перебои в работе кулеров или полный их выход из строя.

Исходя из вышесказанного, не стоит менять один вид термоинтерфейса на другой. В противном случае производитель не будет нести ответственность за поломку или некорректную работу устройства.

Графитовые прокладки

Традиционно считается, что лучшие тепловые проводники — металлы. Можно даже вывести соответствующие формулы, обосновывающие эту закономерность. Но если обратиться к таблице теплопроводности материалов, можно заметить совершенно неожиданную вещь: теплопроводность такого, казалось бы, безнадежного диэлектрика, как алмаз, составляет (для некоторых кристаллических модификаций) до 1600 Вт/м°К — результат, вчетверо превосходящий достижения меди и серебра! Об использовании алмаза в качестве промежуточного слоя между радиатором и процессором не может идти и речи, но вот другая кристаллическая модификация углерода — графит — для этих целей вполне подходит. Теплопроводность кристаллического графита хотя и уступает алмазу, но не столь принципиально (до 800 Вт/м°К). Причем теплопроводность эта анизотропна. Графит — слоистый по структуре материал. Атомы углерода внутри каждого слоя соединены чрезвычайно прочными химическими связями, напоминающими алмазные, а вот связи между слоями — слабые (см. иллюстрации). Поэтому и теплопроводность у кристаллического графита в плоскости слоев, in-plane, огромная, а вот «перпендикулярно» слоям, through the thickness, — сравнительно небольшая (4-6 Вт/м°К).

Изготовленная из графита пленка замечательно распространяет тепло по своей площади. Никакого локального перегрева — графит, может быть, и не слишком хорошо принимает и отдает тепло, но зато замечательно его «размазывает», то есть служит как минимум совершенным тепловым экраном (тепло быстрее уходит в стороны, нежели проникает насквозь). Никакой другой термоинтерфейс(Разве что кроме тепловых трубок — они еще более эффективны. Но, к сожалению, они и стоят гораздо дороже, да и не всегда возможно их использовать) ничего подобного сделать не позволяет, а потому интерес к теплопроводящим пленкам уже несколько лет остается стабильно высоким. Промышленную технологию получения высокоэффективных теплопроводящих графитовых пленок (Pyrolitic Graphite Sheet, PGS) давно разрабатывает и использовала для гибкого теплоотвода в нескольких ноутбуках Matsushita Electronics. Однако в одной из последних моделей, Panasonic Toughbook CF-Y2, она использовала более перспективные технологии eGraf Fredda и eGraf SpreaderShield на основе натурального кристаллического графита компании Graftech, благодаря которым 14-дюймовый Centrino-ноутбук не нуждается ни в одном вентиляторе. Аналогично технологии Graftech применяются в безвентиляторном супертонком ноутбуке Sony VAIO X505, а также для оптимального распределения и экранирования тепла в ноутбуках IBM и LG. Компания Samsung выбрала пленки SpreaderShield для предотвращения локального перегрева своих плазменных панелей.

Вернемся к настольным процессорам. У графита достаточно высокая теплопроводность даже перпендикулярно кристаллическим слоям; он является очень мягким материалом и хорошо «прилегает» к любым поверхностям; однако по обоим показателям графитовая прокладка — скорее уверенный середнячок, нежели лидер, поэтому сегодня их уже почти никто для этих целей не использует. Однако одну такую прокладку — от отечественной компании «АРМО-Графит» — мы включили в наш обзор.

Термопаста для видеокарты

Графические процессоры, как и другие электронные компоненты, нуждаются в эффективном отводе тепла. Термоинтерфейсы, использующиеся в кулерах ГПУ, обладают теми же свойствами, что и пасты для центральных процессоров, поэтому для охлаждения видеокарты можно использовать «процессорную» термопасту.

Продукты разных производителей отличаются по составу, теплопроводности и, конечно же, цене.

Состав

По составу пасты делятся на три группы:

  1. На основе силикона. Такие термопасты являются наиболее дешевыми, но и менее эффективными.
  2. Содержащие серебро или керамическую пыль обладают меньшим тепловым сопротивлением, чем силиконовые, но стоят дороже.
  3. Алмазные пасты – самые дорогие и эффективные продукты.

Свойства

Если состав термоинтерфейса нас, как пользователей, не особо интересует, то способность проводить тепло волнует гораздо больше. Основные потребительские свойства пасты:

Теплопроводность, которая измеряется в Ваттах, деленных на м*К (метр-кельвин), Вт/м*К

Чем выше эта цифра, тем эффективнее термопаста.
Диапазон рабочих температур определяет значения нагрева, при которых паста не потеряет своих свойств.
Последнее важное свойство – проводит ли термоинтерфейс электрический ток.

Выбор термопасты

При выборе термоинтерфейса необходимо руководствоваться свойствами, приведенными выше, и конечно, бюджетом. Расход материала достаточно невелик: тюбика, весом 2 грамма, хватит на несколько применений. При необходимости менять термопасту на видеокарте один раз в 2 года, это совсем немного. Исходя из этого, можно приобрести более дорогой продукт.

Если же вы занимаетесь масштабным тестированием и часто демонтируете системы охлаждения, то имеет смысл взглянуть на более бюджетные варианты. Ниже приведем несколько примеров.

  1. КПТ-8.
    Паста отечественного производства. Один из самых дешевых термоинтерфейсов. Теплопроводность 0.65 – 0.8 Вт/м*К, рабочая температура до 180 градусов. Вполне подойдет для использования в кулерах маломощных видеокарт офисного сегмента. В силу некоторых особенностей требует более частой замены, примерно один раз в 6 месяцев.
  2. КПТ-19.
    Старшая сестра предыдущей пасты. В целом их характеристики схожи, но КПТ-19, за счет небольшого содержания металла, немного лучше проводит тепло.

    Данная термопаста является токопроводящей, поэтому не стоит допускать ее попадания на элементы платы. Вместе с тем, производитель позиционирует ее как не засыхающую.

  3. Продукты от Arctic Cooling MX-4, MX-3 и MX-2.
    Очень популярные термоинтерфейсы с неплохой теплопроводностью (от 5.6 для 2 и 8.5 для 4). Максимальная рабочая температура – 150 – 160 градусов. Эти пасты, при высокой эффективности, имеют один недостаток – быстрое высыхание, поэтому замену придется производить раз в полгода.

    Цены на Arctic Cooling достаточно высоки, но они оправданы высокими показателями.

  4. Продукты от производителей систем охлаждения Deepcool, Zalman и Thermalright включают в себя как бюджетные термопасты, так и дорогие решения с высокой эффективностью. При выборе также нужно смотреть на цену и характеристики.

    Наиболее распространенными являются Deepcool Z3, Z5, Z9, Zalman серии ZM, Thermalright Chill Factor.

  5. Особое место занимают термоинтерфейсы из жидкого металла. Они весьма дороги (15 – 20 долларов за грамм), но обладают феноменальной теплопроводностью. К примеру, у Coollaboratory Liquid PRO данное значение равняется примерно 82 Вт\м*К.

    Крайне не рекомендуется использовать жидкий металл в кулерах, имеющих алюминиевую подошву. Многие пользователи сталкивались с тем, что термоинтерфейс разъедал материал системы охлаждения, оставляя на нем довольно глубокие каверны (рытвины).

Сегодня мы поговорили о составах и потребительских свойствах термоинтерфейсов, а также о том, какие пасты можно найти в розничной продаже и их отличиях.

Термопаста и термопрокладки: недостатки и преимущества

Начнём с термопрокладок. Итак, какие преимущества они имеют?

  • Просты в использовании.
  • Их можно вырезать разными по размерам и форме.
  • Не пачкаются, легко устанавливаются.
  • Не высыхают.
  • Изготавливаются из различных материалов в соответствии со спецификацией.

Недостатки:

  • Высокая стоимость производства.
  • Одноразовое использование.

Итак, на первый взгляд термопрокладки имеют множество преимуществ. Различные по форме, можно быстро установить новую вместо старой, простые в установке. Разнообразные виды материалов, из которых они изготавливаются, позволяют выбрать наиболее предпочтительный материал с точки зрения электрического, теплового, химического или физического использования.

Однако цена на них может быть достаточно высокой. Чаще всего, при производстве комплектующих, термопрокладки устанавливаются вручную, что сразу же увеличивает стоимость конечного продукта.

Теперь рассмотрим характеристики термопасты. Преимущества:

  • Надёжность.
  • Дешевизна.
  • Качественное устранение зазоров.
  • Требуется лишь тонкий слой.

Недостатки:

  • Пачкается при нанесении.
  • Высыхает.
  • Требуется достаточное давление.

Подведём итоги. Термопрокладки являются хорошим вариантом, в особенности для ноутбука, но нужно ответственно подойти к их выбору. Лучше взять хорошую термопасту вместо дешёвых некачественных термопрокладок. Также при выборе последних вы можете ориентироваться на тип и качество материала. Это даёт дополнительную возможность контроля над своей системой.

СОВЕТ. Если цена имеет для вас существенное значение, лучше сделать выбор в пользу термопасты. Вам понадобится нанести лишь тонкий слой, чтобы добиться хорошей теплопроводности. Более того, чем тоньше будет этот слой, тем лучше будет теплопроводность. Термопрокладки практически всегда значительно толще необходимого слоя термопасты. 

Также термопаста значительно лучше справляется с выравниванием поверхностей. Поскольку она является вязким веществом, эта субстанция способна заполнять как мельчайшие зазоры, так и достаточно крупные неровности. Она справляется с этой задачей значительно лучше, чем термопрокладки, которые не имеют способности «затекать» во все углубления. Если поверхность ваших комплектующих или радиатора имеет значительные неровности, лучше отдать предпочтение термопасте.

Когда вы определитесь с выбором, желательно установить программу контроля температуры комплектующих и некоторое время отслеживать показатели, чтобы убедиться, что ваш выбор оказался верным.

На что обращать внимание при покупке

Выбирая самую хорошую термопасту, стоит обратить внимание на формфактор, свойства, теплопроводность и рабочую температуру. Необходимо учитывать срок, на протяжении которого не наблюдается деградация материала

Только в этом случае можно выбрать пасту, которая позволит улучшить параметры видеокарты.

Упаковка

Термоинтерфейсы продаются в разных объёмах. От упаковки зависит сохранность материала при хранении, удобство нанесения. Используют следующие форматы:

  • Банка – предназначена для больших объёмов расходного материала. Герметичные крышки обеспечивают длительное хранение. Минус формата – неудобная дозировка;
  • Тюбик – применяют для поставки средних объёмов термоинтерфейса. Упаковка обеспечивает длительную сохранность. Наносить на поверхность удобнее, чем из банки, но стоит позаботиться об инструменте для разравнивания;
  • Пакетик – упаковывается небольшое количество интерфейса, которого достаточно для 1-2 нанесений. Остатки засыхают очень быстро;
  • Шприц – самый удобный формат. Удобное и простое нанесение, возможность длительного хранения остатков при наличии колпачка. ТОП производители предпочитают этот вариант фасовки.

Для эпизодической замены больше подходит шприц, в ремонтных мастерских можно использовать тюбики.

Свойства

Отвечая на вопрос о том, какая термопаста для видеокарты лучше по советам профессионалов, наш эксперт рекомендует обращать внимание на следующие свойства продукции:

  • Вязкость – состав не должен быстро растекаться. Не рекомендуется использовать загустевший термоинтерфейс, которые не сможет заполнить все поры. Параметры вязкости должны лежать в диапазоне от 150 до 500 Па*с.
  • Химическая инертность – вещества в составе не должны вызывать коррозию;
  • Безопасность – в рецептуре могут содержаться токсичные вещества, которые выделяются при нагреве. Это не допустимо;
  • Электропроводность – работать с интерфейсами без диэлектрических свойств смогут только профессионалы.

Только с учётом этих характеристик можно купить хорошую пасту и поменять в лучшую сторону характеристики видеокарты.

Теплопроводность

Теплопроводность – главная характеристика термоинтерфейса. Чем выше этот параметр, тем эффективнее отвод тепла от видеокарты. Производители расходных материалов выпускают продукцию, у которой показатели термопередачи лежат в диапазоне от 2 до 10 Вт/м*К. Интерфейсы с такими характеристиками обеспечивают снижение температуры на 5-10 градусов. Увеличение теплопроводности влияет на стоимость пасты.

Рабочая температура

Для домашнего ПК этот параметр не имеет особого значения: все производители выпускают термоинтерфейсы, которые выдерживают нагрев до 200-250 градусов. Характеристики критичны для тех, кто разгоняет компьютер с помощью криогенных технологий. В этом случае нужна паста, сохраняющая свои свойства при -200-240 градусов. Для мощного видеооборудования требуется материал, способный выдержать нагрев до 250-350 градусов. Если не учитывать температурный диапазон – термоинтерфейс будет быстро деградировать.

Что такое термоинтерфейс, зачем он нужен

Это средство, имеющее специальный состав. Устанавливают его между охладительной системой и теплопроводящими деталями. Применяют для стационарных ПК, ноутбуков.

Виды:

  • Термопаста – вязкое вещество наносится тонким слоем между устройством и деталью. Отводит тепло от самих деталей, тем самым предотвращая их нагревание.
  • Полимерные составы – это жидкие смолы, которые после нанесения на теплоотдающую поверхность застывают. При этом улучшают герметичность, прочность электронных соединений.
  • Клей – этот материал не очень популярен, редко используется. Все связанно с его техникой нанесения. Если неправильно его использовать, то это приведет к замене ПК.
  • Спайка жидким металлом – на данный момент пользуется популярностью. При этом имеет ряд недостатков. Такой системой должен пользоваться профессионал. Ведь нужно не только подготовить поверхность перед спайкой, но и детали. Причем не все материалы можно паять жидким металлом. Например: алюминий, медь керамика не подходят для пайки.
  • Термопрокладка – это пластина с высокими теплопроводными свойствами. Ее размещают между нагревающими деталями и охлаждающей системой. На данный момент это самый надежный, проверенный способ защитить детали от нагревания или перегрева. Они продаются разной толщины. Это от 0,5 до 5мл. Хотя профессионалы советуют приобретать не меньше 1 мл. Совет, при ее выборе следует измерить толщину старой изоляции.

Как выбрать точную толщину термопрокладки?

При выборе толщины прокладок нужно точно измерить величину зазора между охлаждаемой и отводящей тепло поверхностями. Толщина прокладки (Thermal Pad) обычно подбирается равной ширине измеренного зазора плюс 0.1-0.5 мм для обеспечения прижима с учетом деформации материала прокладки. При отсутствии подходящей толщины в имеющемся ассортименте прокладок, следует подбирать ближайшую по размеру, округляя найденный размер в большую сторону. Установка немного большей прокладки увеличивает ее прижим, что снижает тепловое сопротивление и увеличивает эффективность.

График зависимости теплового сопротивления термопрокладок Keratherm от их толщины и прижимного усилия (чем меньше тепловое сопротивление, тем лучше):

Не следует проявлять фанатизм, используя слишком толстые прокладки, особенно, если они очень жесткие. Из-за сильного прижима может произойти повреждение BGA-шариков охлаждаемых микросхем, которое неизбежно приведет к отвалу чипа. В связи с этим, при установке термопрокладок на микросхемы VRAM, не стоит использовать длинные «термоковрики» с поверхностью, закрывающей сразу несколько микросхем. Лучше вырезать индивидуальную прокладку для каждого чипа. Это обеспечит хороший прижим и освободит место для избыточной массы деформирующейся прокладки в стороне от чипа, что уменьшит вероятность повреждения BGA-контактов.

При выборе прокладок следует учитывать, насколько сильно они могут деформироваться при сжатии. Поправка на прижим может варьироваться в зависимости от мягкости использующегося термоинтерфейса. Различные материалы имеют свою способность к деформации, которая может достигать 1 мм при использовании мягкой прокладки толщиной в несколько миллиметров.

Пример, иллюстрирующий установку термопрокладки средней твердости между радиатором и печатной платой (иллюстрация с igorslab):

Для точного измерения размера зазора (промежутка) между плоскостью радиатора и охлаждаемой поверхностью удобно использовать калиброванные металлические пластины (толщиномер). При его покупке следует ориентироваться на модели, в которых шаг между соседними толщинами составляет 0.05-0.1 мм.

Пример толщиномера (Blade Thickness Metric Filler) с подходящим шагом в диапазоне 0.05-1mm, который можно использовать для измерения величины зазора при подборе прокладок:

Измерения нужно производить с присоединенным к плате устройства радиатором. При этом между кристаллом GPU и пластиной охлаждения необходимо вставить прокладку толщиной примерно 0.1 мм, которая будет имитировать термопасту (это может быть кусочек обычной бумаги для принтера).

Различия между термопастой, смазкой и термопрокладками?

Термопаста сложна в установке и может стать грязной, в то время как сухие термопрокладки не подходят. И наоборот, когда речь идет о производительности, термопаста значительно лучше, чем прокладки, особенно при более высоких температурах.

Причина производительности погружения в первую очередь связана с шириной колодок. Тепловые накладки отделяют кулер от процессора/графического процессора твердым слоем материала, значительно снижая его теплопроводность. Тепловыделение — это лучшая точка контакта для отвода тепла от устройства.

Кроме того, прокладки не так сильно соответствуют и не соответствуют форме поверхностных дефектов, как случайно прилипают к ним. При использовании термопасты разрыв между процессором/графическим процессором и кулером значительно уменьшается, что позволяет радиатору выполнять свою работу намного эффективнее.

Другое отличие — это долголетие. Герметизирующие свойства термопрокладок ухудшаются с большей скоростью, чем термопаста, и требуют замены намного раньше. Кроме того, удаление пэдов из процессора не является простым процессом, так как они имеют тенденцию прилипать к процессору, что затрудняет их снятие. Существует также риск смещения ЦП при попытке удаления колодок, что может привести к непоправимому повреждению.

Вопрос-ответ

Как часто нужно менять термопасту на видеокарте?
Термоинтерфейс не нужно менять по расписанию. Единственным критерием необходимости обслуживания является повышение температуры до неприемлемых значений. При использовании бюджетных паст эта процедура выполняется раз в 1-1,5 года. Премиальные материалы способны обеспечить стабильную работу чипсета на протяжении 7-10 лет.

Какой толщины должен быть слой термопасты?
Рекомендуемая толщина слоя 20-40 мкм. Допускается увеличение до 80 мкм. Слой должен быть равномерным, поэтому не стоит использовать просроченные интерфейсы с увеличенной вязкостью.

Можно ли смешивать разные термопасты?
Смешивать составы нельзя. Материалы могут иметь разные составы, что часто приводит к увеличению вязкости и снижению показателей термопередачи.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
RozBlog
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: